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ABSTRACT

A new type of vector multiplication defines a group

(whose elements are vectors) isomorphic to the group of

rotations. This allows a vector representation of rotations

which has many advantages over the usual matrix or Euler-

ian angles approach--e.g., this vector representation avoids

the need for trigonometric relationships and requires only

three independent parameters. Several applications show

the simplicity of this vector representation--in particular,

an analytic solution to a least-squares rotation problem.

The differential equations defining the motion of a rigid

body are obtained in terms of a vector differential equation.
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A VECTORAPPROACHTO THE ALGEBRA

OF ROTATIONSWITH APPLICATIONS

by

Paul B. Davenport

Goddard Space Flight Center

INTRODUCTION
o

The algebra of rotations is generally approached through matrix algebra, where the matrix of

the rotation is defined by the product of simple rotation matrices. Each of the simple rotations is

about a coordinate axis and is uniquely determined by an angle. The most general rotation is uni-

quely defined by three angles (Eulerian angles), provided that the axis of each rotation is known.

The convention of defining Eulerian angles varies considerably in the literature, so that, when only

three angles are known, the product matrix is ambiguous. Furthermore, the angular or matrix ap-

proach to rotations requires the evaluation of trigonometric functions and therefore the use of

tables or a computer. The approach here is to define a group (whose elements are three-dimensional

vectors) isomorphic to the group of rotation matrices. The algebra of rotations can then be repre-

sented by the algebra of vectors (dot and cross product plus a new vector product which will be

defined later), and does not require the evaluation of trigonometric functions.

A comment on notation: matrices and vectors are denoted by capital English letters and their

elements by small English letters with subscripts. All vectors are considered as column vectors;

a superscript T denotes the transpose of a vector or matrix. A superscript -1 denotes the inverse

matrix. Primes denote the transform of a vector. Vector notation is used merely to simplify the

algebraic relationships existing among the components of various vectors, and is not intended to

suggest a physical interpretation. Even though two vectors may represent the same physical

quantity, they are not regarded as equal unless they are expressed in the same coordinate system.

Similarly, the notation U v _ Wmay be used (even though v and w are expressed in different co-

ordinate systems) merely to indicate that the components of u are formed from the components of

V and Waccording to the standard equations for cross products. It will be assumed throughout that

all coordinate systems are right-handed orthonormal systems.

VECTORS DEFINING ROTATIONS AND THEIR ALGEBRA

If R is the matrix of a rotation, then References 1 and 2 show that R may be expressed by

R (,_) /io!) ix,2x1x2xlx3to _X2

: cosi .... 1 +(1-cos,") xl x 2 x22 x2x a _ sin',' -x 3 0 x (1)

0 x 1 x 3 x2x 3 x32 ] x 2 -x 1



where x = (x_. x2, x3)_ is aunit vector defining the axis of rotation and 8 is the angle of rotation.

Except when otherwise stated, it is assumed that x has been selected so that 0 < _?< 77;this is always

possible, since RX(0) = R_x (-_)and Rx (_+_) = R_ x (--8).

The following expression for R may also be found in Reference 1:

R : (BT)- B (2)

where

x 3 tan_- -x 2 tan_

B : 3 tan: 1 xl tln (3_

In order to eliminate the angle in Equations 1 and 3, we assign a length (which is a function of

_) to x, in such a way that the sine and cosine of 0 can be determined by this length. Many such

functions exist; we choose tan _/2 and sin ¢)/2 as examples. Thus, let

Y = tan _ x, z = sin 5 X, where 0 < _ < _ ;

by standard trigonometric identities we obtain:

0 Y¢_
,i_ : ¢i+Y_ : ¢_'

0 1

_o_ 5 _ ¢_-z 2 ,

6 : : 2¢z2(1 z2)
1 +Y_

I -y2
cos _ = = 1 - 2Z 2 •

1 ÷y2

Hence the definition of R as given by Equation 1, using Y and z, alternatively, becomes

EI( ° )yyyyyy t°yo1 _y2) 1 + 2 i Y2 Y22 Y2 Y3
R : 1 + Y_ + 2 -Y3 0 Yl ' (4)

0 \Yl Y3 Y2 Y3 Y32 / Y2 -Yl



and

= (1- 2z 2) 1 + 2 z 1 z 2 z22 z 2 z 3

0 I z3 z2 z3 Z32 /

+ 2 1
o

-Z 3

z 2

z 3

o

-Z 1

(5)

If B is expressed as a function of Y, Equation 3 becomes

-Y2

B : -Y3 1 1 " (6)

Y2 -Yl

Thus, every vector Y defines a rotation matrix by Equation 4, and every vector Z with z 2< 1 defines

a rotation matrix by Equation 5. Hence Equations 4 and 5 define mappings that map sets of vectors

into the set of rotations. We have yet to verify that the mapping is "onto," i.e., that for every ro-

tation matrix there exist vectors Y and Z such that Equations 4 and 5 define the matrix of the rotation.

Let R be the matrix (with elements r,j ) of a rotation. Separating R into symmetric and skew-

symmetric parts gives

I (R+R T) + 1 (R-R T)

Comparing this with Equation 5 gives the following relations:

3 - 4Z 2 = _,

(where _ is the trace of R)

r12 r 2

1
2z 2 z 3 : _- (ra2 + r23 ) ,

2Zl z3 -2 13 '

1
2zI z 2 = _ (r21 +r12 ) ,

(9)



1- 2(Z22+ Z 2) rll ,

1 - 2(z12+ za2 ) :: r22 ,

1 - 2(,12_ z]) r_3 .

These last three equations imply

z_ = (1 ÷rll-r22-r33)/4 ' 1

z22 : (1 +r22-rll -raa)/4,

Thus, to express R in the form of Equation 5 demands that Z satisfy nine conditions; by using the

well-known properties of rotation matrices, it is easy to verify that these nine conditions are

consistent.

Equations 7 and 8 give a convenient expression for z:

(lO)

Z2 4

r23 - r32
Z 2_ r3' r13} ' (11)

rl 2 r21/

provided that z 2 ,e 1. If Z 2 : 1, then Equations 9 and 10 may be used to determine z. In this case,

however, z is not unique; if it satisfies Equations 9 and 10, so does -z. In practice, this ambiguity

is of no consequence; because, if Z 2 1, Z and -Z yield the same matrix.

From Equation 1, we find that ,:7 1 + 2cos 5, which by Equation 11 implies that Z 2 • 1.

Hence the mapping defined by Equation 5 is a mapping of three-dimensional vectors over the

field of real numbers whose length is less than or equal to unity (denote this set of vectors by ()

onto the group of rotation matrices. The mapping is also one-to-one except when Z 2 : 1(, : -1).

The vector Y may be obtained, like the vector z, directly from the matrix R or indirectly from

Z itself, by the relationship

1

Y : ¢_:_Z. (12)



Thus,

Y

The vector Y is undefined when :_ -1.

tors of infinite magnitude whose direction is given by a unit vector, X, say.

\r,2 r21/

This singularity may be removed if we agree to allow vec-

For such vectors,

Equation 4 becomes

R -I _ 2XXT . (14)

- With this convention, Y may be obtained from the rotation matrix R with trace -1, if it is noted that

x z in this special case. Hence, x may be obtained from Equations 9 and 10.

Let _ denote the set of all real three-dimensional vectors augmented by the vectors of infinite

magnitude discussed above. Then Equations 4 and 14 define a mapping from _: onto the group of

rotation matrices. Thus, either of the two sets _ or _ may be used to parametrize the group of

rotations. However, when vectors are used for this purpose it should be emphasized that they cor-

respond to transformations. Hence, it is their algebraic properties as transformations that con-

cern us and not their properties as vectors (indeed, ._ is not even a vector space). It does not mat-

ter that two elements of _ or _ may be equal in the sense of equality of transformations but not

equal in the normal sense of vector equality. On the other hand, the abundance of vector opera-

tions (and their algebraic properties) that are normally employed to simplify relationships between

components of vectors can also be applied to vectors corresponding to a rotation. What makes the

vector parametrization appealing is the fact that the algebra of vectors as rotations can be ex-

pressed in terms of standard vector notation. In order to distinguish vectors used to parametrize

rotations from ordinary vectors transformed by rotations, we introduce a new type of vector, which

is obtained by defining a new equivalence relation among realthree-dimensional vectors. Definition:

Given a set :_ of real three-dimensional vectors and a mapping • that maps s onto the group of ro-

tation matrices; then two elements of :_are said to be equivalent if they map into the same rotation

matrix. For the two sets _ and _, defined above, vector equivalence is the same as vector equality

except for vectors mapping into rotation matrices with trace of -1.

Clearly, vector equivalence as defined above is an equivalence relation and separates the sets

and ;_into disjoint classes. These equivalence classes are merely the inverse images under • of

the rotation matrices. We shall call these equivalence classes "rotation vectors" and denote them

in the same manner as ordinary vectors. The algebra usually associated with vectors is also ap-

plicable to rotation vectors. The well-known operations of scalar multiplication, vector addition,

and dot and cross products are performed on rotation vectors in the classical manner, and the

ordinary symbolism is used to denote these operation. When there is more than one vector in the

equivalence class, the desired result of an operation can be that obtained by using either vector.

However, the same vector must be used throughout any one expression.



Giventworotationvectors Yl andY2,Equation4 definestworotationmatrices,say R1andR2,
respectively. It is well knownthat R = R2R1is alsothematrix of a rotation. Thus,byaprevious
discussionthereexistsarotationvector y thatdefinesR. This vectorcanbeobtainedfrom Equa-
tion 13by forming the productR2R_in terms of Y_andY2, whichgivestheremarkablysimple
expression

1
Y - I-Y, "Y2 (Y_ +Y2+YI xY2) " (15)

If Z_ and Z2 are members of C defining R_ and R2, respectively, then the Ze_ defining R, such

that R : R_R_, may be obtained in a similar manner, i.e., by comparing the trace and skew-

symmetric part of R2 R1 with the trace _ and skew-symmetric part of R, respectively, as given by

Equation 5. This gives

3 - 4Z 2 :- 3 - 4Zo2,

_-_2-Z = (_1#1-Z22- Zl - Z2)Z0 ,

where

z o : _-Z] Z 1 + _ Z_ + z 1 × Z 2 .

Thus

and

1- z2 = 1- z02 = [ 1-_12 _-z22-zl.z2] 2

ll/1-Z22- Z_" Z2

_/_-Z 2

= ±1,

where the sign depends only on the numerator, since ¢1- Z2> 0 by definition, i.e., ¢1- z 2 = cos _/2

where o <_) <_. Hence, using the signum function, sgn(x), which is defined as +1, -1 according as

x is positive or negative, respectively (here zero is considered positive or negative), leads to

z =

The above argument does not guarantee that the z as given by Equation 16 corresponds to R = R2 R_

when Z 2 = 1. However, it is straightforward though tedious to verify that Equation 16 does indeed

give the z defining R = R2I_ for all zl and z 2 contained in _ corresponding to R_ and R2 , respectively.



Actually,Equation16maybeobtainedmore readilyby combiningEquations12and15andthe
identity

1 (17)
Z = 1+_T-y_- Y ,

which is a useful formula since it is also valid in the limit as y2 approaches infinity.

Equations 15 and 16 suggest a new type of vector product. Definition: Let _ be a set of vec-

tors, let * be a binary operation on 8, and let _ be a mapping of S onto the group of rotation ma-

trices. Then * is said to be a rotation product if it is preserved by _, i.e., if _(v *w) - z(v) z(w),

:[or everyv and Win _. Thus for zl,Z 2 in _, the product Z = Z 2*z I given by Equation 16 is aro-

tation product. In a similar vein, for YI, Y2 in v, Equation 15 defines a rotation product, except

when Y_ • Y2 = 1, or when either of the rotation vectors has infinite magnitude. In these exceptional

cases, we define the product Y2 * Y1 by forming z_ and Z 2 by Equation 17, z 2 * Z_ by Equation 16, and

then Y2 *Y1 by Equation 12.

Let v ' and 5' denote the two sets of rotation vectors (equivalence classes) defined by vector

equivalence and the sets _ and 5, respectively. Then each of the two sets v' and 5', together with

its rotation product, forms a group. Clearly, _' is closed under the rotation product. Also, since

Equation 17 implies that z : Z 2 * z_ has length less than or equal to unity, _' is closed. The as-

sociativity of the rotation product is easily verified. The identity of each set is the null rotation

vector, and the inverse of v (in either set) is -V. Furthermore, the respective mappings of the two

sets defined herein are isomorphisms onto the group of rotation matrices. Thus I (the identity ro-

tation matrix) is the image of the null rotation vector; R-1 is the image of -V if R is the image of V.

Actually, a one-to-one relationship between vectors and rotations may be defined without the con-

cept of equivalence class. For example, when _ = -1, additional conditions may be imposed on z

to ensure uniqueness. The choice of additional constraints, however, depends on the preference of

the user (a situation analogous to the many definitions of Eulerian angles). Thus, we introduced

vector equivalence to emphasize that for the purpose of representing a rotation it does not matter

which vector one selects out of an equivalence class for a 180-degree rotation.

The group of rotation transformations can now be represented by either of the two groups, 4'

or _;'. This representation has certain advantages over the usual matrix representation, stemming

from the fact that the rotation is defined by three independent parameters, without recourse to trig-

onometry (the matrix approach requires nine elements; or the evaluation of six trigonometric

functions plus two matrix multiplications). In many applications the vector representation requires

fewer calculations than the matrix representation. For example, matrix multiplication requires 27

scalar multiplications plus 18 additions; the rotation product of Equation 15 requires only 13 multi-

plications and 10 additions.

The choice of vector representation depends on the application. The formulas associated with

the Y rotation vector are generally quite simple, requiring no radicals or trigonometric functions.

Thus this vector representation is a valuable tool for hand calculations or for deriving theoretical



results, but has the inconvenience of becoming infinite for all 180-degree rotations. The z-vector

representation, on the other hand, is always finite, always defined (uniquely, except for its sign at

180-degree rotations), and the rotation product is valid for all rotations; but the existence of the

radical is inconvenient for hand calculations. The vector representation W - tan _/4X may prove

to be useful since it combines some of the assets of both the Y and Z. In this case we have

IO w 3

-W 2

6W2+ 1) I+ 8wwT+ 4(1-W 2) --_r 3 O

w 2 -w 1

2 2
Y = --W, Z .... W,

1 -W 2 1 +W 2

1 1
z

1_ l+/i_V Y 1,_ z

COORDINATES OF A ROTATED VECTOR

A rotation matrix is frequently used to find the coordinates of a vector after rotation. The

vector representation yields a useful formula for this application. Let v' be the image of v under

the rotation and R the matrix of the rotation (i.e., V' RV). If Y and Z are the rotation vectors de-

fining R, then Equations 4, 5, and 14 give V' as

V' _ YV

V _ =

1

[(1 y2)

-V + 2(V'X) X

ZV :

V+ 2(V" Y)Y +2V×Y] . y 2 < ,:£,

y2 =

(1-2z 2) v + 2(v. z)z _ 2¢1-Z 2 v × z .

Note that the symbolism YV denotes the image of v under the rotation corresponding to Y. Thus the

above equations define a vector multiplication in the same sense that RV defines a matrix

multiplication.

ROTATIONS DETERMINED BY A VECTOR AND ITS IMAGE

In many instances we are given two vectors (v and v') and wish to determine the matrix R such

that v' RV. If nis to be a rotation matrix, then we must have v'2 = V 2. For simplicity, we as-

sume that v' 2 - v 2 - 1. The rotation taking V into v' is not unique; however, the vector representa-

tion of the "shortest path" rotation is immediately obvious--the axis of rotation is collinear with



V'_ V andtheangleof rotationis cos -t V" v'. Thus

1
Y = v' × v, v • v' f -1,

l+V.V'

1
z : v' × v, V • v' # -1 .

}(2(1 +v • v')

If V • V' = -1, then Z is any vector satisfying the two conditions z 2 = 1 and z - v 0; Y has infinite

magnitude with direction defined by z.

I_OTATIONS DETERMINED BY TWO VECTORS AND THEIR IMAGES

A common practice in orbit theory is to construct a rotation that takes the xy-plane into the

plane of the orbit and takes the x-axis into the direction of perigee. This is a particular example

of the following problem: Given v,, v 2 (v 1 and V 2 noncolline&r), v(, and v 2' such that v1'2 : v 2,

i s i , t J

V22 = V22, and v_ -v 2 : v 1 v2, find the rotation that takes V, intovl and v 2intoV 2. Here again,

the vector representation of the rotation yields a simple solution.

If v' =: RV, then Equation 2 implies that BTv ' : BV. From Equation 6 and by matrix multiplica-

tion, this condition can be written as

V' + Y × V' : V - Y xV,

or

V - v' = Y × (v÷v') ,

where Y is the vector representation of R.

Thus, the conditions v t' = RVj and v 2' = RV2 may be expressed by

v 1 - v l' : Y× (v I +Vl' ) and v 2 - v_' : Y x (V2 + V2' ) •

Let

A i : V i - V ' B i V i + V i'

Then the condition equations become

(i : 1,2).

A i : y × B i , (i: 1,2),



where Ai • B i = 0 and A 1 • B 2 = -A 2 • B 1, It is immediately obvious that Y • Ai = 0. If each side of

the first equation is cross-multiplied by the vector )'2, we obtain

A2_A, : A: _ (YxB,) : (A2B,) Y- (A2"Y)B, : (A2,,)Y;

thus, if A2 • B_ = -A 1 • B 2 / 0, we obtain a simple expression for Y, namely,

1

y : V1.V2,_v2.vl, (Vl-Vl') _ (v2-v2') .
(18)

A more general expression may be obtained as follows.

tion by B_; this gives

Cross-multiply each side of the ith equa-

B, × A i = BfY - (B i " Y) B i , (i 1, 2). (19)

Therefore,

B 2 (B] ×A_) :

B1 (B 2 ×A2) :

a,2a 2 • ¥- [BI"B2) B, Y,

8_B, • Y - (% .B_)B_• Y,

and solving these two linear equations for B, • Y and B 2 • Y yields

B 1 • y :

(B]×B2) " [B12A2-(B , "B2) AJ

B l ×B2)2

B 2 • y :

(B, ×B2)" [(B , "B2)A2-B _ All

B _:B2)2

Substitutionof these last expressions in Equation 19 gives the solution for ¥, provided that B, _ B2 / 0.

If V,' : V, and/or v2' = V2, the z rotation vector is obtained from Y by Equations 17 and 19 un-

less B x× B2 = 0; otherwise, Equations 17 and 18 provide a much simpler expression for z, namely,

Z --

_.(v I • v 2' - v 2 • v,')

+I/v,-v,,) ivy-v;)]
(v, -v,') _ (v_-v;)

When V ' = v_ and B, × B 2 0, then z : v_. The above expressions provide another way to make a
i

vector representation of a rotation from the matrix of the rotation R: choose two independent vec-

tors (v, andv2) and setv,' = RV,, V2' = RV2.

10



GivenVI, V2, V l' and v 2 such that v12 = vl '2, v22 = v2'2 and V_.V 2 = Vl'. V2' , the matrix of the

rotation, R, that takes v_ into Vx' and v 2 into V2' can be determined from the vector representation

obtained above and Equation 4 or 5. A more direct approach is to construct two right-handed or-

thonormal coordinate systems; one from vectors v_ and v2, and the other from vectors v_' and v2'.

The ratation taking the first system into the second will then take v i into v_'. The matrix of this

rotation can be easily written as the product of two matrices, each of whose rows or columns are

formed from the components of the constructed axes relative to some underlying coordinate system.

u, : vl/Iv_l , u,' : v,'/Iv,'l,

Ev ; ,. iv ,1W : 2 V2 V , : 2' Vl,_ Vl '

u_ = w/Iwl, u; : w'/Iw'l,

s t #

U3 : U t × U 2 , U3 : U1 × U2 ,

R, : (u_,u_,u3) , R_ = (_/, u;, u;) ;

then

R = R2 RI- i

A LEAST-SQUARESROTATION-DETERMINATION OF ATTITUDE*

Consider a vehicle with a local coordinate system that has been rotated from a fixed coordin-

ate system. If the vehicle has equipment that can find the direction (relative to the local coordinate

system) of a point whose direction relative to the fixed coordinate system is known, then the rota-

tion relating the local and fixed systems can be determined by two or more observations of such

points.t If the directions were exact, then the rotation relating the two coordinate systems could

be obtained from any two noncollinear observations as described in the previous section. In prac-

tice, however, the directions are not exact and in such cases we generally seek the "least-squares"

solution.

For the case at hand, we seek a rotation matrix R such that the scalar function

i=l

*This section is a solution to Problem 65-1 by Grace Wahba in Reference 3.

tThe Orbiting Astronomical Observatory has this capability, where the points are known stars.

11



is a minimum. Here,vi andW,arevectorsdefininga pointrelative to thefixedandlocalcoor-
dinatesystems,respectively, v_andw_neednotbeunit vectors;their lengthmayindicatethe
reliability of themeasurement.Thematrix R--thusalsothefunction._(R)--hasonlythree inde-
pendentparameters.Therotationthatmakes¢(R)a minimumis a solutionof thethreeequations
obtainedbysettingthepartial derivativesof ¢with respectto eachindependentparameterto zero
(assumingthat thederivativesdoexist). Theuseof Euleriananglesas independentparameters
leadsto threeconditionequationsthat arecomplicatedandtediousto deriveandmustbedealtwith
asthreescalar equations.Ontheotherhand,the conditionequationsin terms of avectorrepre-
sentationof Rcanbeexpressedas a singlevector equation,easilyderivedandsolvablebyvector
andmatrix algebra.

SinceRis a rotation matrix, ¢(R) may be written as

i=l

which as a function of Y¢;7 gives

2.¢(R) : i2+Wi2 - 1 +Y2
i =

when y2 <% and

v, .w,+2(v, (20a)

t=l

(where x 2 1) when y2 :- _,.

In the first case,

w,+2(v,. ×)(wl.x)]t, (20b)

0¢

aY i

where the subscript j refers to the j th component of the vector. Thus a necessary condition for

¢. to have a minimum (at least among the rotations of less than 180-degrees) at some V is given

12



by thevector equation

2[E(Wi ×Vi)"Y+(V i 'Y)(Wi "V)+Vi "Wi] Y = (1+Y2)E [ (Vi "Y) Wi+(Wi"Y)Vi +Wi×ViI (21)

(For convenience,the rangeof summationis omittedhereinafter;the letter i will denotethe sum-
mationindex.)

Takingthedotproductof eachside.with y gives
t

When this last expression is substituted in the vector equation and the factor 1 + y2 is divided out,

we obtain

E { [(Wi >(Vi)" Y-r 2Vi *WilY- [(vi " Y) Wi + (Wi " Y) Vi +Wi× Vii} = 0 . (22)

The same substitution in Equation 20a gives

¢(R) : E(Vi2+Wi2-2Vi "Wi) - 2Y • E Wi × Vi (23)

when Y satisfies Equation 22. Hence, to minimize ¢ we must take the solution of Equation 22 that

makes v • _ w_ × v, a maximum.

Equation 22 may be written in matrix notation as follows:

(AvYI+B) Y = A, (24)

where I is the identity matrix, A is the vector _ w+× v_, and B is a symmetric matrix, with elements

bjj : 2_--_(V i " W i- Vij wij )

(To see this most easily, express Equations 22 and 24 in component form.)

13



If A = 0, thenY = 0 is the desired solution (there may be other solutions if det B = 0, but the

value of ¢ will be the same for all solutions). If A f 0, then the solutions may be obtained as out-

lined below. Multiplying each side of the matrix equation by the adjoint of A• YI + B gives

multiplication of this equation by AT yields the scalar equation

Denote the scalar AT Y by },; denote the scalar functions det(\I +B) and AT[adj(_I +B)] A by f(\) and .

g(_), respectively. Then the above scalar equation may be written as

_f(_) - g(x) = o.

Note that the left-hand side, say h(_), is a fourth-degree polynomial in _, and that -f(-_) is the

characteristic polynomial of the symmetric matrix B.

The solutions to Equation 24 are obtained by determining the zeros of h(_) and solving the re-

sulting linear equations. However, in the discussion following Equation 23, it was determined that

the maximum value of£ • _(w_ ×vi) leads to the minimum value of ¢(Y). The maximum value of

Y '2(w i ×vi) is the largest zero of h(_); denote this zero by \o.

Since h(\) is a fourth-degree polynomial, _o may be obtained analytically; however, a numeri-

cal iterative solution is probably more practical, since the zeros of h(\) are easily bounded. Note

that _(Y) is a non-negative function; therefore, Equation 23 implies that

1 n

i=l

which provides an upper bound.

Since B is symmetric, there exists an orthogonal matrix P, say, such that p-1 BP is diagonal.

Let Y' and U be vectors such that Y = PY' and A PU. Then, in terms of y' and U, Equation 24

becomes

and a premultiplication by P-1 gives

[(UTY') I +D]Y' = U,

14



where D is a diagonal matrix whose entries are merely the eigenvalues of B. (Without loss of gen-

< _' < 3 " )erality, we may assume the eigenvalues to be arranged in increasing order, say _"l - 2 -

Multiplying each side of the last equation by adj [(U T Y')I+ DJ" and then by UT yields the scalar

equation

det(UTy' I÷D) uTy ' = UT adj(UTy' I÷D) U.

However, u_ Y' : A_ Y = _ and D is diagonal, so this last equation may be written in the form

\ = + (" +_'1)("+:_-2)"(;' ÷_,)(_ +_2)(_'+_'3) u,2( :' +'_"21( :_'_\31 u22(_'+_',)(_+\3) _ us2

The left-hand side of the above equation is z f(_) and the right-hand side is g(x_). We may now

easily determine the sign of g(z_) when x = -_'3, -x2, -_, respectively (assuming _,__< _'2 -< :_3), and

thus also the sign of h(>. ) : _ f(:._) - g(z, ) at these points. From these considerations, it can be

shown that Xo is at least as great as -,\,, and also that the largest zero of _(_) (provided that g(\)

is not identically zero, i.e., A/0) is less than or equal to -\,. Hence, a lower bound of our de-

sired zero i_o is -_ _ , which can be determined only by solving a cubic. But the largest zero of _(:x.)

is also a lower bound, and this can be found by solving a quadratic.

Thus far, we have obtained the minimum of ¢(R) for rotations of less than 180 degrees. To

obtain the minimum among all 180-degree rotations, we use the method of Lagrange for solving

extremum problems with a constraint. The necessary conditions become

: o, j : 1,2.3. (25)

where p is Lagrange's multiplier and X must be such that x 2 = 1. In terms of our previous nota-

tion, the above conditions may be collected into the single vector equation

o
where B is the symmetric matrix introduced in Equation 24. This last equation can be satisfied if

and only if z is a root of the cubic equation

dot I(_- 2_--_Vi 'Wi) I+BI : 0"
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Buttheroots of this equationaregivenby

- 2 Vi " Wi = -\k ' k : 1, 2, 3,

where the _'k are eigenvalues of B. The condition equations thus become

(B-)_k I) X = 0 , X2 = 1 •

and the solutions are the unit eigenvectors of B. The value of ¢(R) at each of these solutions may

be obtained by multiplying the j th equation of Equations 25 by xj and adding the three equations

together. This yields

, : xl(wi' x),

which, when substituted in the expression for _(R) (Equation 20b), gives

¢(R) : 7_(v?÷w? +2v i .w,) - _

Thus the eigenvector (with unit length) corresponding to the minimum eigenvalue ;_1 gives the min-

imum of ¢(R) for all 180-degree rotations.

Equation 23 gives the minimum of _(R) for rotations other than 180 degrees:

+(R) : 2(v_-w,)_ - 2_0 ;

it was also shown that x0-> ->'1. Hence, the rotation giving the minimum ._(R) among aIl rotations

is

Y = (_o I+B)-IA, when f(xo) / 0,

16



or by a 180-degree rotation with axis of rotation X defined by

(k o I+B) X = O, and X 2 = 1 ,

when f(_oJ = o, where ko is the largest zero of h(_).

To avoid inverting a near-singular matrix and dealing with large values of the components of

Y when f(_o) is near zero, obtain the Z vector representation of R from Equation 17 and from the

relationship

This gives

(k o I +B) -1
det (_o I +B) f (h.o)

[adj(_oI+B)] A, when f(_o) f 0,
+ dj (£o I + A

and

(koI+B) Z = 0 and Z2 = 1, when f(Xo) = 0,

where

adj(kl +B) : k2 1 + k [Tr(B) I-B] + adj(B) ,

f(_) : k 3 + Tr (B)_ 2 + Tr[adj(B)] _ + det(B).

g(k) = AT [adj(_I + B)] A,

and Tr(B) denotes the trace of B. These last equations are easily verified by direct calculations.

If n = 2, V12 = V_, and Wl2 = W22, then the following simple procedure gives the least-squares

solution. Let

V l - V 2 WI - W2
-- s -

U I , U t

V 1 +V 2 W I +W 2

U 2 - IV I +V21 U2' ]WI +W21

17



and use the techniques of the preceding section to obtain the rotation that takes each U i into u/.

Such a rotation takes the plane determined by V1 and V2 into the plane determined by W1 and W2 and

ensures that Wl - 1W_ W2 • Rv 2 . That such a rotation is the least-squares rotation can be verified

by expressing the V_ and w, as functions of U_ and u/. It is then clear that ¢(R) is a minimum

when U,' : RU_.

We have also been very successful in solving Equation 21 in the cases where n > 2, by succes-

sive substitutions, i.e., using the iteration

I_y2 _,

_=1

Here, Yi is the jth approximation to Y, and Yo is obtained as above using two of the v_ and their

corresponding images w_. In fact, in one case studied, the procedure converged even when the

angle of rotation was as large as 179 degrees.

RELATIONS BETWEEN EULERIANANGLES, MATRIX OF ROTATION,
AND VECTORAPPROACH

Since Eulerian angles have a wide usage (especially when the angles correspond to yaw, pitch,

and roll) it may be convenient or necessary to transform the matrix or vector parametrization of

a rotation into Eulerian angles. To do this, we must establish a convention or positive sense of

rotation. Here, we assume that the matrices of the simple rotations about each of the coordinate

axes are given by

RI ('_) (! 0 0 :/= cos !/ sin (_;' , R 2 (!?) : 1 ,

- _i., '_ co._ \sin _ 0 cos ,!,'/

Ra (c?) : s c_ cos _'! ,
0

where I_, (_) indicates a rotation of (_about the ith axis. The matrix of any rotation R can then be

written as

fi : 1, 2,3,

: 1, 2,3,

: 1, 2,3,

,,_ j /k.
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If i, j, and k axe distinct, then direct calculation shows that

where 8ij k

= Sijk rki , cosO2sin81

cos 81 -- rkk , COS 02 sin 83

cos (32 cos 83 = ri i '

= 1 if ijk is a cyclic permutation of 123, and Sij k

" the angles axe defined as follows:

sin 02 = 8ijk rki '

cos02 = + r_i2 i +ri 2 = + r_k2 k +r_aj ;

COS (31 --

COS (33 =

sin 81 = -_i k rkj/C°S (32'

sin (3a : -_i k rji/c°s (32'

: o, 8 t and (3a are subject only to the conditions

sin ((33 ± _ijk (31) = _ijk rij'

if cos (32 f 0,

cos ((3a ± giik01) = 78iik rik'

if cos 0 2

= -1 otherwise. Thus, if R is given,

rkk/COS 82 ,

rti/c°s (32 ;

where the upper signs axe taken if sin (32 = 1 and the lower signs when sin (32

The factorization is not unique even when cos 0 2

produces the same product matrix R.

To factorize R in the form

= --1,

/ 0, since either choice of sign for cos (32

R : R i ((33)Rj (82)R i ((31)

where the first and last factors are of the same form, let

sinS=-- +¢ri_ +ri_ -- +¢r,2i +r2 i

cos : r •
(32 i i t
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if sin C_2 7_ 0,

sin 8 r i j/sin 8 2 cos 8 1 = 5j i rik/sin 82

= / = i/sin sin 83 rj i sin82 , COS _'_3 Ji rk 2 '

where _'ji = 1 if ji is in natural cyclic order, and Sji = -1 otherwise. If sin 5_2

subject only to the conditions

: 0, e 1 and U 3 are

where the plus sign is taken if r_ > 0 and the minus sign if r_ < 0.

Given Eulerian angles _,, _, 0 a as defined above, we can obtain the vector representation by

forming the product matrix 1% and then using the techniques of the previous sections. A more di-

rect approach is to use Equations 15 or 16 twice, where

Yi = tan "_ E i , Z i = sin _ E i , -_ < 8 <77 ,

are the vectors corresponding to R_ (_), and E_ is the coordinate axis about which the rotation is

taken. (If 7:< ,_< 2 % then the negatives of the above expressions for the range -_ < ,_< 0 must be

used.)

To obtain the Eulerian angles from the vector z, use the expressions (derived from Equation 5):

rij = 2 [zi zj +-Zk 1-_2_-] , i f j ,

2
= 1- 2Z 2 + 2z irii

where the upper sign is used when ij is in natural cyclic order and the lower sign otherwise. The

angles are then obtained from the appropriate formulas above.

EQUATIONS OF MOTION OF A RIGID BODY

If R(t) is the matrix of a rotation that defines the orientation of a coordinate system (attached

to a moving rigid body) relative to a fixed coordinate system, then R satisfies the matrix differen-

tial equation

R(t) = _(t)R(t), R(0) = I, (26)
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where :: is a skew-symmetric matrix such that ;)v : V × _,(t) for all vectors V, and , is the angular

velocity vector (Reference 4). This equation, in the form

/_R-1 = _-_ ,

with R Rk (,'i3) Rj (,?2)Ri (!:i), gives

f_ p.,R-I -- Rk RjRi Ri-IRj:IRk -I + RkRjR,-IRk -I + RkRk -I (27)

Although this is a matrix equation, it represents only three independent component equations, since

each of the product matrices on the right is skew-symmetric. These three independent equations

can be collected into a single vector equation by means of the well-known isomorphism between

3 × 3 skew-symmetric matrices and three-dimensional vectors,

S(V) : -v 3 0 - v 2 :

v 2 -v 1

v. (28)

It is easy to verify that if R is a rotation matrix, then RS(V) R-' -- RV. Also, from the definitions of

_, it is easy to show that l_. ({:)I_-' (_))-_E_ , where Eg is the coordinate axis of rotation (this is

also valid for rotations about any fixed line). For these reasons, and because ;_-% Equation 27

is equivalent to

: :; Rk("3)R: (::',)E, _ : Rk(_:_,)Ej + : r_

: A:"_, _(0) : 0, (29)

where A is a matrix whose columns are the vectors Rk

" ) T •,::7 : (7; 1' "_2' ''3

RiEi, RkEj, and Ek, respectively, and

The matrix differential equation has no singularities, but requires the integration of nine

scalar functions. Equation 29, on the other hand, only involves three scalar functions, but the

matrix Ais singular when cos_i 2 : 0 for k / i, or when sin_2 - 0 for k - i. Thus, no set of

Eulerian angles can be chosen so that _ will be defined for all rotations. In fact, any set of

Eulerian angles gives singularities for rotations as small as 90 degrees.

To obtain the equations of motion expressed in terms of the Y vector, we merely differentiate

Equation 13 and make the proper substitutions using Equations 4 and 13 and the matrix differential

equation. This gives

1
-Y : :r( .... Y>Y_v......+_', Y(o> : 0 (30)

k J
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To solvefor _,cross-multiply eachsidebyY,andsubtracttheresultingequationfrom theoriginal.
Thus,

2

Differential Equation 30 has no singularities, but from the definition of Y we know that solutions

involving 180-degree rotations will diverge to infinity. However, for many applications (involving

only moderate displacements of the moving frame) this presents no difficulties. The differential

equations in terms of the Z rotation vector can be obtained as they were in terms of the Y rotation

vector. A more direct approach is to use the identity

1
Z : Y, (31)

whence,

: 1 _ Y'_(

I+_ (1+Y2)_ Y" (32)

Equation 30 gives

I (1+y2) • Y (33)y'_' : _- _ .

Combining Equations 30 through 33 gives

: _ ×_+ , z(0) : 0

Conversely, let Z(t) be a differentiable vector function such that over some interval (say,

t o < t < tl) Z 2 < 1 and Z satisfies Equation 34. Then Z(t) defines a rotation matrix R(t)by Equa-

tion 5, and R is given by

= -4Z " ZI + 2(zzT+zz T) + 2 1-_S(Z)- 2Z " Z(I-Z2) -I/2 S(Z),

where S(V) denotes the skew-symmetric matrix formed from the vector v by Equation 28. Taking

the dot product of each side of Equation 34 with z leads to

1 d(Z 2) 1

Z " 7- : 2 dt - 2 c*' " Z_--_£'
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or

1
Z" Z(1-Z2) -1'2 = _- .... Z, (35)

since z 2 < 1. When Equations 34 and 35 are substituted in the expression for R, then

:  s(z....• zi] z(z •

and direct calculation will verify that R nR for t o < t < t _. In fact, R : ;_R even if Z 2 : 1, provided

that z has a derivative at this point satisfying Equation 34 and that Equation 35 is valid in the limit

as z 2 approaches unity. For example, if _.: is a non-zero constant vector, then

is a function satisfying Equation 34 for -v_< I_:[ t < ,_; indeed, the matrix R defined by Z satisfies

Equation 26 over the same interval.

Thus, both Equations 30 and 34 define the motion of a rigid body over a wider range of allow-

able orientations than Euler's equations (Equation 29) and require only the integration of three

scalar equations (which do not contain trigonometric functions). Furthermore, the results of the

integration (especially z) can be used directly. There is no need to generate the matrix; for ex-

ample, we can obtain the coordinates of a vector relative to the body system and V or Z as shown

under "Coordinates of a Rotated Vector." If z, defines the orientation of the body at time t, rela-

tive to the body system at t : 0, and Z 2 defines the orientation at time t 2 relative to the body sys-

tem at t = t,, then the rotation product z = Z 2 Z, gives the orientation at time t 2 relative to the

body system at t : 0 for all Z_ and z 2. Eulerian angles can also be obtained as described in the

previous section.

As with most differential equations, one would have to devote consiaerable time to Equations

30 and 34 in order to describe completely the properties of the solutions. The equations have one

property in common that is useful for approximating the solutions for small increments of time.

H Y(0) : z(0) = 0, then the nth derivative of V or Z at t : 0 contains the term _,("-')(0)--the

(n- 1)th derivative of _; at t = 0; for the first two derivatives this is the only term. Thus,

Y(h) = _- _dt + U,

Z(h) : _- _dt ÷ V,
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whereu andv areof theorder of h3. Hence,to thesecondorder, bothsolutionsmaybeapproxi-
matedby theintegral of the angularvelocity.

CONCLUSION

The significant advantages of the vector approach to rotations, as presented here, over other

parametrizations is that the vector parameters can be obtained with ease from basic data; we need

not transform them to a new set in order to perform the algebra of rotations (the product of ro-

tations and the product of a vector by a rotation). We need not evaluate the trigonometric func-

tions; there are no longer the singularities that existed when we tried to write a vector in polar

form or factor a rotation matrix into simple rotations. To illustrate these last remarks, we cite

one final important application of our vector approach to rotations.

In orbit theory, it is customary to obtain the components of the position and velocity vectors

by rotating a coordinate system in which the direction cosines of the angular momentum vector

are given by E3 = (0, 0, 1) T into a fixed system in which the direction cosines of this vector are

also known, say H : (h 1, h 2, h3)_. We usually assume that H is of the form !t - (sin i sin;_,

- sin i cos;_, cos i)w; thus the rotation is normally given by R = R3 (-_)R t (-i). Unfortunately, this

technique produces a singularity even in the trivial case i - 0 (no rotation required). On the other

hand, we can refer to the section "Rotations Determined by Two Vectors and Their Images,"

obtaining

z
1

= _ H ×E 3

sin _ cos

• i .
-- Nlrl 2 sin

0

as the rotation vector taking E 3

uniquely for all i except i = _.
into H. Thus, the two parameters z 1 and z 2 define the rotation
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